BELIEVE IN YOURSELF, BELIEVE IN YOUR SCIENCE. HAPPY #AdaLovelaceDay

2000px-Ada_Lovelace.svg

Looking back through history, we see the wide range of advances in different scientific fields. However, these days there is still a very important point in science and technology that didn’t advance at the same speed and is one that we cannot afford to miss: I am talking about the recognition of the scientific work of many women researchers through science History. It is crucial to remember the role of these women and that is the reason why the scientific community choose Ada Lovelace as a symbol of the important role of women in science. Every year, on the second Tuesday of October, Ada Lovelace’s day is celebrated as an international celebration of women in science and technology. However, who was Ada Lovelace and why did she became the image that represents scientific women?

Ada Gordon (who later became Countess of Lovelace) was the only legitimate child of the writer Lord Byron. She was the first scientist to recognise the full potential of a “computing machine”. Thus she became the first computer programmer in history. Her mother gave her a strict childhood education of logical thinking, science and mathematics. Ada became fascinated with mechanisms and designing different types of machines, embracing that way the British Industrial Revolution. In 1833, Ada Lovelace helped develop a device called The Analytical Engine with Charles Babbage – “the father of computers”.

Ada Lovelace
Ada Lovelace

We can say that was the beginning of a crucial and important period in science, as that engine was the early predecessor of the modern computer! So now you start to get an idea of the crucial role that Ada Lovelace had in science and technology.

In 1842, she expanded these ideas on the use of machines through the manipulation of symbols; translating an article by Luigi Menabrea on the engine and adding an elaborate set of notes (entitled Notes). ‘Notes’ was the most elaborate and complete set of information which many experts consider to be the first computer program- that is, an algorithm designed to be carried out by a machine. Nowadays, because of her research on this topic she is often referred to as “the first computer programmer” as well as the inspiration behind (the well-known) Alan Turing’s work on first computer design around the 1940’s.

Ada died at the age of 36. However, as we can see, Ada was – and still is – an inspiration for many people, and for many women who want to pursue their careers in science. Her passion and vision for technology have made her a powerful symbol. She must be a clear example for many of us working in different scientific fields. She could be a key inspiration to make us understand we need to believe in ourselves and believe in our research. Of course, society still must change its perspective of female scientists and the role they deserve. But let’s start by thinking we can achieve what we want. Let’s be grateful to those who came before us, let’s recognise their hard work and let’s keep on fighting for our future and the future for other female scientists. Never forget your commitment to improve the system that has led to so many more opportunities for women in science today, and will lead to in the future.

About the Author
Margarita Segovia-Roldán (PhD) is an neuroscientist and electrophysiologist who studied biology at the University of Seville (Spain). She has developed her scientific career in the UK through her work at the University College London (UCL) and the University of Sheffield. She is passionate about science communication and is involved with the British Science Association (BSA) Sheffield branch (where she is also one of its founder members). She is also involved in the Society of Spanish Researchers in the UK (SRUK), where she develops different public engagement activities as #CineScience and she collaborates on the #SRUKBlog.

Made to order organs, mere fantasy or indisputable reality?

By Abdullah Iqbal

Will we one day be able to end all organ donor lists?

It sounds like a dream that we can produce organs but it may eventually be possible due to research in regenerative medicine and 3D printing. We may one day be able to produce organs for our individual needs.

Organ
Some of the organs that can be produced from stem cells-
Image credits – dreamstime.com

The organ supply is currently a major problem with 20 people dying every day in America waiting for an organ. But these organs could, in fact, be produced from our own skin. Scientists do this by first adding certain substances called transcription factors to a sample of our skin cells which reprograms them  into stem cells. Because these organs are produced from our own cells our body’s immune system which protects us from foreign invaders will not destroy the transplanted organ.

You might be thinking, why all this hassle just to produce some stem cells? However, stem cells are very special because they have two abilities which make them immensely important. One being self- renewal; the ability to divide and produce more stem cells, and proliferation; the ability to be able to divide into other cell types.

With these stem cells, scientists are trying to produce organs for transplantation. However the complexity of an organ means that there has not been successful transplantation. For example, the heart has seven different cell types and to ensure it functions  it must be developed in an environment which mimics that of the human body. But at present, we do not fully understand what controls an organs’ formation.

Another major problem is that stem cells produced from our own cells (which are called induced pluripotent stem cells [iPSC]) have a higher chance of becoming cancerous. The exact reason for this is still not fully understood and this problem must be eliminated before we can transplant organs generated from stem cells into a patient.

However, it is not all doom and gloom. There is a bright side as we are getting closer to our goal. In 2015 researchers at the University of California, Berkeley generated ‘mini-hearts’ which even beat like a normal heart and have micro-chambers for blood storage. In the same year, scientists at the Heriot-Watt University, Edinburgh produced the first mini-livers using a 3D printer. These advancements will allow scientists to gain a better understanding of the necessary process that occurs to produce organs and therefore bring us one step closer to our goal of making organs.

The relatively new process of 3D printing will help us get there and hopefully allow us to produce organs on a whim. Imagine having your own made to order organ. You would not have to worry about the donor list. They would just take a small sample of your cells and generate the organ you require – after many complex procedures, of course. These organs are produced using 3D printers and bio-ink.

Bio-ink is a material which mimics the extracellular environment (outside environment) of the organ in question and instead of going on paper the bio-ink is placed layer by layer onto a microgel to ensure the organ keeps its shape. After the organ is produced it must be incubated to allow the cells to mature and so produce a functioning organ.

We are slowly going to achieve our goal of producing organs, but the question is what social and economic ramifications it will cause. Will only the rich be able to use them? Should people who damage their own organs such as smokers and excessive drinkers be allowed to have an organ transplant, when the money could be used to save other people? Will it change social norms, allowing people to become more ignorable to the damage they cause to their organs because they can just be replaced?

I will leave you to ponder these questions and to come to your own decisions.

References

U.S. Department of Health & Human Services (2017) Organ Donor Statistics [online]. U.S. Department of Health & Human Services. [Viewed 2nd February 2018]. Available from: https://www.organdonor.gov/statistics-stories/statistics.html

National Institutes of Health (2018) Stem Cell Basics 1 [online]. National Institutes of Health. [Viewed 4th February]. Available from: https://stemcells.nih.gov/info/basics/1.htm

Daily Mail (2015) The tiny beating heart grown from STEM CELLS – and scientists say other organs could be on the way [online]. Daily Mail [Viewed 1ST February 2018]. Available from: http://www.dailymail.co.uk/sciencetech/article-3162819/The-tiny-beating-heart-grown-STEM-CELLS-scientists-say-organs-way.html

PubMed.gov (2015) Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D [online] PubMed.gov [Viewed 3rd February]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26486521

How stuff works (2018) How Bioprinting Works [online]. How stuff works [Viewed 2nd February]. Available From: https://health.howstuffworks.com/medicine/modern-technology/3-d-bioprinting.htm

About the Author

I am a first-year undergraduate student at the University of Sheffield studying a Biomedical Science Degree. I am deeply interested in the use of stem cells because this is a field of science which hopefully one day I will conduct research in. Therefore, writing a blog post will allow me to further my own understanding of scientific topics and help inform other people about the amazing research currently occurring worldwide to alleviate suffering. Furthermore by informing people of research it will give them hope that there will eventually be a cure for whatever they are suffering from.

LinkedIn: – https://www.linkedin.com/in/abdullah-iqbal/

Email: abdullahiqbal90@googlemail.com

Email me if you have any queries