By Margarita Segovia-Roldán

Again, every 11th of February, we are happy to celebrate the International Day of Women and Girls in Science. This is a day created in order to achieve full and equal access to, and participation in science for women and girls. Thanks to this day, we can also recognise the value that scientific women bring to science and the society and help to make their careers more visible. However, we still have a long way to go to bring them the recognition they deserve. By celebrating this international day, we showcase to society the important scientific work that women contribute to.

The scientific community often uses Ada Lovelace as an icon for women in science and technology. However, there are plenty of others we can name. For instance, Rita Levi-Montalcini.


Rita Levi-Montalcini was an Italian scientist honoured for her work in neurobiology. She was awarded the Nobel Prize in Physiology or Medicine (1986) jointly with her colleague Stanley Cohen for the discovery of the nerve growth factor (NGF). From 2001 until her death, she also served in the Italian Senate as a Senator for Life. This honour was given due to her significant scientific contributions. On the 22 April 2009, she reached the age of 100 and at the time of her death, she was the oldest living Nobel laureate.

Rita’s father (a mathematician and electrical engineer) was against his daughter attending university as it would interfere with her future roles as wife and mother. On the other hand, Rita’s mother encouraged her to talk with her father about her intention to study medicine. At age 20, Levi-Montalcini decided that she wanted a life different from the one imagined for every Victorian woman; she wanted to go to medical school and study to be a doctor (Biography: “In Praise of Imperfection”). Finally, she started her career in Turin in 1930, where she became enamoured with the process of neurogenesis. Even as a Jewish woman and scientist in the time of Mussolini and Hitler, Levi-Montalcini was determined to continue her research. Her perseverance made her build a little laboratory in her own bedroom and she sent research manuscripts to Belgium to be published; publishing was impossible for her due to World War II. Rita finally split her job between the USA and Italy developing her research as a Full Professor in 1958 to 1977 at Washington University and in her second lab in Rome (1962).

A key discovery she made during her time in the United States was developing an in-vitro culture technique to grow neurons in a dish. With Stanley Cohen, Levi-Montalcini discovered that peripheral tissues secrete a factor that directly influences neuronal survival in mammals. Their discovery was published in 1960, and they termed the substance “nerve growth factor,” or NGF. NGF was only the first of an entire class of chemotactic factors (neurotrophins) which promote the growth and survival of specific subsets of neurons, amongst other functions. As the field of molecular neuroscience progressed, it became evident that neurotrophins also have roles in the adult brain. They both received the Nobel prize highlighting the importance of their work, and the immeasurable effects it has had on other multiple fields of scientific research.

We can now understand how Rita Levi-Montalcini’s perseverance and passion for science made her one of the most important women in science from the 20th century leading her to become an inspiration for many other scientists all over the world. That way we can say that she is a wonderful example of the role of women in science during the past few centuries. We need to keep on making scientific women more visible. This way we recognise their hard work and the contributions they make to science, just as Rita did.


About the Author

Margarita Segovia-Roldán (PhD) is a neuroscientist and electrophysiologist who studied biology at the University of Seville (Spain). She has developed her scientific career in the UK through her work at University College London (UCL) and the University of Sheffield. She is passionate about science communication and is involved with the British Science Association (BSA) Sheffield branch (where she was also one of its founder members). She is also involved in the Society of Spanish Researchers in the UK (SRUK), where she develops different public engagement activities as #CineScience and she collaborates on the #SRUKBlog.






Looking back through history, we see the wide range of advances in different scientific fields. However, these days there is still a very important point in science and technology that didn’t advance at the same speed and is one that we cannot afford to miss: I am talking about the recognition of the scientific work of many women researchers through science History. It is crucial to remember the role of these women and that is the reason why the scientific community choose Ada Lovelace as a symbol of the important role of women in science. Every year, on the second Tuesday of October, Ada Lovelace’s day is celebrated as an international celebration of women in science and technology. However, who was Ada Lovelace and why did she became the image that represents scientific women?

Ada Gordon (who later became Countess of Lovelace) was the only legitimate child of the writer Lord Byron. She was the first scientist to recognise the full potential of a “computing machine”. Thus she became the first computer programmer in history. Her mother gave her a strict childhood education of logical thinking, science and mathematics. Ada became fascinated with mechanisms and designing different types of machines, embracing that way the British Industrial Revolution. In 1833, Ada Lovelace helped develop a device called The Analytical Engine with Charles Babbage – “the father of computers”.

Ada Lovelace
Ada Lovelace

We can say that was the beginning of a crucial and important period in science, as that engine was the early predecessor of the modern computer! So now you start to get an idea of the crucial role that Ada Lovelace had in science and technology.

In 1842, she expanded these ideas on the use of machines through the manipulation of symbols; translating an article by Luigi Menabrea on the engine and adding an elaborate set of notes (entitled Notes). ‘Notes’ was the most elaborate and complete set of information which many experts consider to be the first computer program- that is, an algorithm designed to be carried out by a machine. Nowadays, because of her research on this topic she is often referred to as “the first computer programmer” as well as the inspiration behind (the well-known) Alan Turing’s work on first computer design around the 1940’s.

Ada died at the age of 36. However, as we can see, Ada was – and still is – an inspiration for many people, and for many women who want to pursue their careers in science. Her passion and vision for technology have made her a powerful symbol. She must be a clear example for many of us working in different scientific fields. She could be a key inspiration to make us understand we need to believe in ourselves and believe in our research. Of course, society still must change its perspective of female scientists and the role they deserve. But let’s start by thinking we can achieve what we want. Let’s be grateful to those who came before us, let’s recognise their hard work and let’s keep on fighting for our future and the future for other female scientists. Never forget your commitment to improve the system that has led to so many more opportunities for women in science today, and will lead to in the future.

About the Author
Margarita Segovia-Roldán (PhD) is an neuroscientist and electrophysiologist who studied biology at the University of Seville (Spain). She has developed her scientific career in the UK through her work at the University College London (UCL) and the University of Sheffield. She is passionate about science communication and is involved with the British Science Association (BSA) Sheffield branch (where she is also one of its founder members). She is also involved in the Society of Spanish Researchers in the UK (SRUK), where she develops different public engagement activities as #CineScience and she collaborates on the #SRUKBlog.

Have you got what it takes to be a Nature Detective?

By Caroline Wood

What do a live kangaroo, mammoth teeth and otter poo have in common? They could all be found at ‘Nature Detectives’: our last outreach event held at Weston Park Museum on Saturday 24th February 2018!

A couple of months ago, we were approached by Weston Park Museum who wanted to increase the science content of their programme of family-friendly activities. Knowing how popular and well-loved the museum is, we leapt at the chance to get involved. During a ‘behind the scenes tour’, we discovered a treasure trove hidden away in the cupboards: bones, teeth, skulls and incredibly lifelike taxidermy. This gave us the idea for our event – using the museum’s collections we would show how scientists can use the ‘clues’ animals leave behind to learn more about their lives and habits.

The museum staff were very accommodating, giving us the use of both their upstairs and downstairs activity rooms. This allowed us to plan a ‘detective trail’ of different activities. After completing each activity, the children would be given a ‘clue’ about a mystery animal.  Once they had all the clues, they could then use our identification key to work out the animal and claim a free goody bag. The idea proved a popular one. Barely a few minutes after opening, the museum was filled with parents and children eagerly filling in their clue sheets.

At each of the activity stands, the children received a ‘clue’ to help them identify a mystery animal…
Photo credit: Daniella Sasaki

Downstairs the big question was ‘Who dung it?’ where we had invited Dr Deborah Dawson and her team from the Sheffield Otter Project as special guests they had brought a plethora of poo samples from all sorts of animals, and demonstrated how these ‘remains’ contain hidden information about animal diets, and how they can even be sources of DNA. Next to them, the children had great fun getting very messy on our footprints stand, where they were busy making animal tracks using pipe cleaner feet and paint.

Upstairs the fun continued with lots of opportunities to handle and closely inspect the museum’s artefacts, including our ‘What can we learn about teeth?’ activity led by Rebecca Hollely, one of our BSA volunteers. “The children really enjoyed being able to hold different kinds of skulls and teeth to guess the species and its diet. We had a range of animals, from the skull of the well-known goat, to a swordfish bill, and even a weighty mammoth molar which impressed children and parents alike!” she said.

Learning what teeth can tell us about animal diets – with the help of a kangaroo! Photo credit: Daniella Sasaki

Meanwhile, our ‘Spot the Moth’ activity used the case of the peppered moth to show how animals evolve to become better adapted to their environment. Some of the moths were so well camouflaged that we stopped using them because they were simply too difficult to find! In our final activity, birds were the star of the show: using the museum’s complete taxidermy collection of British birds, we showed how key features can help us to tell different species apart. “We had a stall teaching kids how to use identification keys to find out the names of taxidermy animals. Both the kids and parents really enjoyed being able to see and examine the taxidermy animals, and many said they had learnt a lot” said Weilin Wu, another one of our volunteers.

Just some of the rewards in our goody bags!
Photo credit: Daniella Sasaki

Throughout the day, we had a constant stream of visitors which left us all exhausted at the end, even those who didn’t dress as a kangaroo to add further amusement! But it was so rewarding to see our visitors really engage with the activities and ask so many questions. The mystery animal quiz was so popular that we had to run and print more copies, and we only just about had enough goody bags to last to the very end. Judging by the smiling faces and feedback, the kids felt a real sense of achievement from the activities. As Rebecca summed it up, “The day was filled with laughter, gasps of exclamation and it would be harder to say who had the most fun… the children or the volunteers!”

BSA Museum
We had a brilliant time at Weston Park Museum and can’t wait to come back for our next event!

We had great fun and we are very grateful to Weston Park museum for making us feel so welcome. We are already looking forward to holding our next event there, “The Science of Multilingualism”, where we will explore what happens in the brain as we learn and speak different languages. This will take place on Saturday 14th April 2018 – keep an eye on our events page, Twitter account and Facebook page for more details!

With special thanks to RSPB, Weston Park Museum, Plantlife UK and the British Ecological Society for providing pens, colouring pencils, stickers and wildlife spotter cards for our goody bags.

And of course, a big thank you to our amazing BSA Sheffield volunteers who made this event happen: Weilin Wu, Caitlin Higgott, Olivia Rhoden, Lynette Hodges, Rebecca Hollely, Shauni McGregor, Ruby Kell, Daniella Sasaki, Antonio del la Vega de Leon, Chloe McCole, Jingyi Huang, Ellie Marshall, Tilly Dixon, Matthew Keedy, Francesca Dawson and Helen Alford.

About the Author

Caroline Wood is a PhD student studying the interactions between parasitic weeds and their hosts at the University of Sheffield. She first became involved with BSA Sheffield when she went along to the launch meeting ‘out of curiosity’. Since then, she has been involved in a number of events for BSA Sheffield, including an activity stand at the Sheffield Food Festival on crop diseases; a Fun Palace on the theme of the five senses and ‘The Science of Wellness’, a collaboration with Sheffield Flourish, a local mental health charity. She blogs at http://scienceasadestiny.blogspot.co.uk/ and you can also follow her on Twitter

Made to order organs, mere fantasy or indisputable reality?

By Abdullah Iqbal

Will we one day be able to end all organ donor lists?

It sounds like a dream that we can produce organs but it may eventually be possible due to research in regenerative medicine and 3D printing. We may one day be able to produce organs for our individual needs.

Some of the organs that can be produced from stem cells-
Image credits – dreamstime.com

The organ supply is currently a major problem with 20 people dying every day in America waiting for an organ. But these organs could, in fact, be produced from our own skin. Scientists do this by first adding certain substances called transcription factors to a sample of our skin cells which reprograms them  into stem cells. Because these organs are produced from our own cells our body’s immune system which protects us from foreign invaders will not destroy the transplanted organ.

You might be thinking, why all this hassle just to produce some stem cells? However, stem cells are very special because they have two abilities which make them immensely important. One being self- renewal; the ability to divide and produce more stem cells, and proliferation; the ability to be able to divide into other cell types.

With these stem cells, scientists are trying to produce organs for transplantation. However the complexity of an organ means that there has not been successful transplantation. For example, the heart has seven different cell types and to ensure it functions  it must be developed in an environment which mimics that of the human body. But at present, we do not fully understand what controls an organs’ formation.

Another major problem is that stem cells produced from our own cells (which are called induced pluripotent stem cells [iPSC]) have a higher chance of becoming cancerous. The exact reason for this is still not fully understood and this problem must be eliminated before we can transplant organs generated from stem cells into a patient.

However, it is not all doom and gloom. There is a bright side as we are getting closer to our goal. In 2015 researchers at the University of California, Berkeley generated ‘mini-hearts’ which even beat like a normal heart and have micro-chambers for blood storage. In the same year, scientists at the Heriot-Watt University, Edinburgh produced the first mini-livers using a 3D printer. These advancements will allow scientists to gain a better understanding of the necessary process that occurs to produce organs and therefore bring us one step closer to our goal of making organs.

The relatively new process of 3D printing will help us get there and hopefully allow us to produce organs on a whim. Imagine having your own made to order organ. You would not have to worry about the donor list. They would just take a small sample of your cells and generate the organ you require – after many complex procedures, of course. These organs are produced using 3D printers and bio-ink.

Bio-ink is a material which mimics the extracellular environment (outside environment) of the organ in question and instead of going on paper the bio-ink is placed layer by layer onto a microgel to ensure the organ keeps its shape. After the organ is produced it must be incubated to allow the cells to mature and so produce a functioning organ.

We are slowly going to achieve our goal of producing organs, but the question is what social and economic ramifications it will cause. Will only the rich be able to use them? Should people who damage their own organs such as smokers and excessive drinkers be allowed to have an organ transplant, when the money could be used to save other people? Will it change social norms, allowing people to become more ignorable to the damage they cause to their organs because they can just be replaced?

I will leave you to ponder these questions and to come to your own decisions.


U.S. Department of Health & Human Services (2017) Organ Donor Statistics [online]. U.S. Department of Health & Human Services. [Viewed 2nd February 2018]. Available from: https://www.organdonor.gov/statistics-stories/statistics.html

National Institutes of Health (2018) Stem Cell Basics 1 [online]. National Institutes of Health. [Viewed 4th February]. Available from: https://stemcells.nih.gov/info/basics/1.htm

Daily Mail (2015) The tiny beating heart grown from STEM CELLS – and scientists say other organs could be on the way [online]. Daily Mail [Viewed 1ST February 2018]. Available from: http://www.dailymail.co.uk/sciencetech/article-3162819/The-tiny-beating-heart-grown-STEM-CELLS-scientists-say-organs-way.html

PubMed.gov (2015) Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D [online] PubMed.gov [Viewed 3rd February]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26486521

How stuff works (2018) How Bioprinting Works [online]. How stuff works [Viewed 2nd February]. Available From: https://health.howstuffworks.com/medicine/modern-technology/3-d-bioprinting.htm

About the Author

I am a first-year undergraduate student at the University of Sheffield studying a Biomedical Science Degree. I am deeply interested in the use of stem cells because this is a field of science which hopefully one day I will conduct research in. Therefore, writing a blog post will allow me to further my own understanding of scientific topics and help inform other people about the amazing research currently occurring worldwide to alleviate suffering. Furthermore by informing people of research it will give them hope that there will eventually be a cure for whatever they are suffering from.

LinkedIn: – https://www.linkedin.com/in/abdullah-iqbal/

Email: abdullahiqbal90@googlemail.com

Email me if you have any queries